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that  this  result  is robust  to either constant,  decreasing  or  increasing relative risk aversion  obtained  under
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1. Introduction

The effect of portfolio constraints and capital market imperfections on financial asset pricing equilibrium is a key topic on financial

economics. This type of analysis is especially relevant after the turmoil experienced by financial markets in the last three years.

There are three main strands of literature dealing with the effects of portfolio constraints on financial equilibrium. A recent particularly

relevant research analyzes the impact of portfolio constraints on the international propagation of adverse shocks. Pavlova and Rogobon

(2008) show how portfolio constraints amplify stock price fluctuations among international stock exchange markets. As expected, absent

of portfolio constraints, all co-movements are due to the common stochastic discount factor and the term of trade channels. However, once

portfolio constraints are  in place, the authors characterize a dynamic equilibrium model in  which an excess co-movement in stock prices

relative to the unconstrained economy naturally arises. Moreover, they are able to  associate their results with the contagion phenomenon

previously studied in  literature.

The second strand is the literature on asset pricing models with different types of frictions and market imperfections. The effects of

portfolio constraints on equilibrium asset and consumption allocations typically include short-sales, borrowing, liquidity constraints, and

restricted participation. Examples are Jarrow (1980),  He and Pearson (1991),  He and Modest (1996),  Heaton and Lucas (1996), Detemple

and Murphy (1997),  Basak and Cuoco (1998), Basak and Croitoru (2000),  Kogan and Uppal (2001),  Detemple and Serrat (2003),  Scheinkman

and Xiong (2003),  Gallmeyer and Hollifield (2008),  and Bhamra and Uppal (2009).  An overall conclusion of this literature seems to indicate

that short-sale constraints may  lead to higher equity volatilities whereas borrowing-constrained equilibria typically leads to lower equity

volatilities,1 and that frictions generate a  wedge between the stochastic discount factor and asset prices large enough to  make some

well-known empirical puzzles compatible with equilibrium in  financial markets.

Finally, a third related strand, which is  especially relevant for this paper, investigates the effects of portfolio constraints on the multiplicity

of financial equilibrium. Basak et al. (2008) (BCLP hereafter) are the first to investigate the extent to  which portfolio constraints to take

unbounded positions in risky assets generate multiplicity or even indeterminacy of equilibria. They show that the introduction of this type

∗ Corresponding author.

E-mail address: alejandro.barrachina@uv.es (A. Barrachina).
1 As an example of the importance of this topic, a  recent empirical analysis of the effects of short-sales restrictions imposed during the 2007–2009 financial crises due to

Beber  and Pagano (2010) show that short-sales regimes were detrimental for liquidity, slow down price discovery, and failed to  support stock prices.
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of constraints increase the number of equilibria in the economy. In particular, they demonstrate that  under potentially complete markets

and portfolio constraints, there may  be a  finite number of additional equilibria over and above the efficient original financial equilibrium.

Moreover, under incomplete markets and portfolio constraints, there is  also a continuum of them, with consumption allocations varying

across this continuum. Indeed, as BCLP (2008) point out, under these circumstances, there may  be robust real indeterminacy of equilibrium.

The finding that portfolio constraints may  expand the set of equilibria, even though by itself it does not imply equilibrium indeterminacy,

is a particularly relevant result because it may  help to understand, within a  rational framework, the large fluctuations of asset returns which

are difficult to explain simply by  changes in  economic fundamentals.2 If a  financial market with binding portfolio constraints admits more

than one but still a finite number of equilibria for the same economic fundamentals, variability of stock prices could be  entirely due to

investors’ expectations. Thus, excess volatility or market crashes may  be explained by rational expectation-generated phenomena, with

investors selecting a  particular equilibrium over another.

BCLP consider a  simple pure-exchange two-period model, with two goods, two  households, two  states of nature (in the complete

markets case) and two stocks paying off  in units of the goods. In the incomplete markets case an additional state is incorporated, leaving

the number of financial assets and the number of goods unchanged.

Interestingly, households are characterized as heterogeneous agents in the sense of having different marginal propensity to consump-

tion, and different initial endowments specified in terms of shares of stocks, not  goods. More importantly, only one of the household faces a

portfolio constraint to take unbounded positions on the holdings of one of the risky assets. Otherwise, no more restrictions are considered;

in particular, short sales are permitted. Unfortunately, however, the household preferences are described by a Cobb–Douglas log-linear

utility function. Indeed, as BCLP recognize, this may  be a rather restrictive assumption since this utility functions presents decreasing

absolute risk aversion, but constant relative risk aversion. While the issue of the realistic sign of absolute risk aversion has been settled for

a long time, the direction of relative risk aversion remains an open question. This suggests that a satisfactory model should be tolerant of

different attitudes of relative risk aversion.

The contribution of this paper is to  investigate the robustness of equilibrium multiplicity with portfolio constraints under a  more general

and flexible utility function.3 Along these lines, Rubinstein (1975) convincible argues that  a successful asset pricing model should require

decreasing absolute risk aversion, and tolerate increasing, constant, or  decreasing relative risk aversion. He shows that the generalized

logarithmic utility function is a  particularly attractive model since it satisfies this requirement and, at the same time, it allows a  pricing

expression for an  uncertain intertemporal cash flow stream even when this is serially correlated over time. Furthermore, the asset pricing

model under this type of preferences assumes no exogenous intertemporal stochastic process of asset prices. For a  given household h, and

a single consumption good, the generalized logarithmic utility function is given by,

uh(Ch) = log(Ch + Jh), (1)

where uh(·)  is the utility of household h, Ch is the consumption of the available good, and Jh is an exogenous taste parameter that may

take different signs. This is the key parameter that captures heterogeneity among households since it simultaneously tolerates increasing,

constant or decreasing relative risk aversion depending upon Jh is positive, zero or negative, respectively.4 Therefore, Jh will be referred to

as the measure of household risk-preference; the higher Jh, the more risk preferring the household. It  is also the case that, when Jh ≤ 0, the

household will never consume for Ch ≤ −Jh, since such low levels of consumption have infinite disutility. Hence, when Jh ≤ 0,  −Jh may be

interpreted as the subsistence level of consumption. Finally, this utility function belongs to the Hyperbolic Absolute Risk Aversion (HARA)

or linear risk tolerance class of tastes and it represents the solution to the differential equation,

−
u′(ch)

u′′(ch)
= Jh + Bch, (2)

for B = 1.5

In this paper, we extend the model of BCLP (2008) when the households are characterized by the log-linear generalized logarithmic

utility function with different propensities to consume. For the case of two  households, and two  goods, the utility function is  given by,

uh(C1
h , C2

h )  =  ˛1
h log(C1

h + J1
h )  + ˛2

h log(C2
h + J2

h ), (3)

where, as before, uh is the utility of each household h characterized by decreasing absolute risk aversion; Cg
h

is the consumption of the good

g by household h;  ˛g
h

is the marginal propensity to consume the good g by household h,  and Jg
h

is the taste parameter representing either

increasing (Jg
h

> 0), constant (Jg
h

=  0), or  decreasing (Jg
h

<  0) relative risk aversion.

The main result of this paper is  that the multiplicity of equilibria remains for all Jg
h

.  This implies that large movements in financial

markets may  be related to  the effects of portfolio constraints on equilibrium prices.

The rest of the paper is organized as follows. Section 2 describes the basic model and shows the results in  the complete markets case.

Section 3 analyzes the effects of incomplete markets. Finally, Section 4 concludes the paper.

2 For example, Cutler et al. (1989) argue in a  very influential paper that most of the large market moves after the Second World War  cannot be apparently explained by

releases  of economic or fundamental information. On the other hand, Cochrane (2011) argues that strong time-varying expected returns seem to  be able to justify most of

the  previously unexplained price fluctuations.
3 Specifically, BCLP in their seminal paper argue that “though we believe that, for the most part, our central results are  robust to local perturbations of utility functions

around the specific log-linear functions we employ here. But this  conjecture remains to  be fully, seriously investigated.”
4 Of  course, when Jh equals zero, we have the typical log utility function with decreasing absolute risk aversion, and constant relative risk aversion, employed by BCLP

(2008).
5 Note that for B /= 0, 1 we  obtain the generalized power utility function, while for B =  0, we have the negative exponential utility function.
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2.  Generalized logarithmic utility and portfolio constraints: the complete market case

2.1. The basic model

In this section we present the fundamental model and the main results of the paper. We  borrow from BCLP (2008) the notation and the

novel approach to obtain the equilibrium. We assume a  basic pure-exchange economy with two-time periods, t =  0 and 1.  Uncertainty is

represented by  two states of the world in  t =  1, ω =  u (up) and d  (down), occurring with probabilities �(ω). When it will be useful to refer

to the initial period of the economy as another state of world, these will be labeled by � = 0, u,  d.

There are two non-storable goods, labeled g =  1, 2, with prices Pg(�) >  0. The production of each good g is  modeled as a  Lucas (1978) tree,

with the exogenously specified stream of output ıg(�) >  0.  Financial investment opportunities are given by two  risky stocks, with period 0

prices qg(0), which are claims to the outputs of the two trees. Each stock is  in constant supply of one unit.

There are two households in the economy, indexed by h =  1,  2.  Each household is endowed with an initial portfolio of the two  stocks

sg
h
(0) and trades in spot markets for goods in periods t =  0,  1 and the stock market in the initial period t =  0. The unique restriction imposed

on the households’ portfolios is the portfolio constraint on household 2.  In particular, household 2 faces a  portfolio constraint of  the form

s2
2
(1) ≥ f (·). This constraint implies that household 2 cannot take unbounded positions in stock two. This type of restriction is  very common

in institutional investments. Both mutual and pension funds have diversification restrictions that  forbids them to hold more than a  given

percentage of the total fund in a  given stock. As in BCLP (2008),  we also consider an endogenous portfolio constraint; that is, we make the

right-hand side of the portfolio constraint, f(·), depend on the endogenous variables of the model. Apart from this one, no more restrictions

are imposed (in particular, short sales are permitted).

Each household chooses its consumption of the goods, Cg
h

(�) > 0,  and terminal portfolio holdings, sg
h
(1), using the log-linear generalized

logarithmic utility function given by

uh(C1
h , C2

h ) =  ˛1
h log(C1

h (0) +  J1
h (0)) +  ˛2

h log(C2
h (0) + J2

h (0)) + ˇ
∑

ω=u,d

�(ω){˛1
h log(C1

h (ω) +  J1
h (ω)) + ˛2

h log(C2
h (ω) + J2

h (ω))} (4)

where  ̌ > 0 is the discount factor and we note that, from now on and for convenience, we  employ the following new parameters, ˛1
h

= ah,

˛2
h

= 1 − ah, ah ∈  (0, 1). The heterogeneity of households’ utilities (a1 /= a2) is  required for our results. In addition, it is  assumed that a1 >  a2

and that the discount factor is  common across households for simplicity.

It is also assumed that the risk-preference parameter Jg
h

(�) is different in  each state of the world � and for each good. However, it

maintains its sign and, additionally, its absolute value vary in  proportion and in the same direction as ıg from one state to another. Moreover,

if Jg
h

(�) = 0 for one particular state, then it will be zero for all other states, and for both goods and households.6 When Jg
h

(�) > 0, ∀h  =  1, 2,

then the utility maximization will not guarantee non-negative consumption and additional conditions will be required. We  will discuss

this issue later on in the paper.

As, usual, a  financial equilibrium of this economy is defined to be the pair of spot goods-stock prices (P, q)  and consumption-portfolio

choices (C, s) such that each households h maximizes its expected utility over its budget set, taking prices as given and all spot goods and

stock markets clear. Formally, each h =  1, 2 maximize,

max
C1

h
,C2

h
,s1

h
(1),s2

h
(1)

uh(C1
h , C2

h ) (5)

Subject to:

(i) The budget restrictions given by,

P1(0)C1
h (0) + P2(0)C2

h (0) +  q1(0)s1
h(1) +  q2(0)s2

h(1) = [q1(0) +  P1(0)ı1(0)]s1
h(0) +  [q2(0) + P2(0)ı2(0)]s2

h(0)

with multipliers �h(0), and

P1(ω)C1
h (ω) + P2(ω)C2

h (ω) = P1(ω)ı1(ω)s1
h(1) + P2(ω)ı2(ω)s2

h(1), for ω =  u, d

with multipliers, �h(ω)

(ii) The portfolio constraint as expressed by,

s2
2(1) ≥ f (·),

with multiplier, �
(iii) And the market clearing conditions

Cg
1

(�) + Cg
2

(�) = ıg(�), and

sg
1
(1) + sg

2
(1)  = 1, for g =  1,  2; � =  0, u, d.

6 In principle, the sign of Jg

h
(�) may  vary between states of the  world, and could even be the case that in one state Jg

h
(�)  = 0, but not in the  others, i.e. each agent may

have  a increasing, decreasing or constant relative risk aversion depending on the state of the world that takes place. However, our analysis does  not consider this option for

simplicity.
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2.2. Methodology

All technical steps taken to  solve the model appear in Appendix A.  We  basically follow the two  step approach employed by BCLP (2008).

The critical feature of this approach is to  ignore the complementary slackness condition associated with the portfolio constraint until the

very end of the analysis, which is  known as “tailoring” the constraint. According to BCLP (2008),  this approach can be used for analyzing

many second best problems like the present analysis of the effects of introducing a portfolio constraint on the set of financial equilibria.

By specifying this constraint in  sufficiently rich parametric form, one can first consider just the effects of the modifications of  first-order

conditions and, subsequently in the second step, the tailoring of parameters in  order to also satisfy complementary slackness conditions.

Additionally, the technical steps employ the following modified variables:

pg(�) = Pg(�)ıg(�) (6a)

cg
h
(�) =

Cg
h

(�)

ıg(�)
(6b)

jg
h
(�) =

Jg
h

(�)

ıg(�)
(6c)

It should be noted that we can use these transformation units because the intrinsic uncertainty represented by Jg
h

(�) is not relevant to

the fundamental structure of the system of equations defining the equilibrium in our model. Our assumptions on Jg
h

(�) allow us to work

with constant jg
h
(�) between states of the world, facilitating the analysis. Hence it can be labeled simply as jg

h
. In addition, variations in  jg

h

are only due to variations in Jg
h

(�). Note also that if Jg
h

(�) < 0 and |  Jg
h
(�)| < Cg

h
(�), then the spot goods market clearing condition7,  implies

that jg
h

∈ (0, 1) and |jg
1

+ jg
2
|  < 1.

A key aspect of the methodology is the introduction of the households’ “stochastic weights”:

�h(�) =
ˇ

�(�)
(7)

It is useful to conduct the analysis in  terms of these variables rather than, in  particular, spot goods prices. Since this is a  model with

real assets (stock payoffs are specified in terms of goods), and there are three spots, there are also three possible price normalizations. For

this reason we adopt the normalization �1(�) =  1, so that we can simply write �2(�) =  �(�), for all �. None of the results depends on this

choice. As pointed out by BCLP (2008),  the quantities �h(�) can be interpreted as the weights of the households’ utilities in an auxiliary

social planner’s problem, even if they are not Pareto efficient. Note also that  Pareto efficiency of the equilibrium allocation requires that

�(�) be a constant weight across all �.

2.3. Equilibrium in consumer and financial markets

In this section we present the equilibrium expressions for the main endogenous variables for the model with the generalized logarithmic

utility function; that is  to  say, consumption, spot good prices and stock prices.

Proposition 1. The consumption allocations, the spot good prices and the stock prices are given by,

C1
1 (�) =

a1[ı1(�) + J1
2

(�)] −  J1
1

(�)a2�(�)

a1 + a2�(�)
, C1

2 (�) =
a2�(�)[ı1(�) +  J1

1
(�)] − a1J1

2
(�)

a1 +  a2�(�)

C2
1 (�) =

(1  − a1)[ı2(�) +  J2
2

(�)] − J2
1

(�)(1 −  a2)�(�)

(1 − a1)  + (1 −  a2)�(�)

C2
2 (�) =

(1  − a2)�(�)[ı2(�) +  J2
1

(�)] −  (1 − a1)J2
2

(�)

(1 − a1)  + (1 −  a2)�(�)

P1(0) =
a1 + a2�(0)

[ı1(0) +  J1
1

(0) + J1
2

(0)]ˇ
, P2(0) =

(1 − a1) + (1 − a2)�(0)

[ı2(0) + J2
1

(0) +  J2
2

(0)]ˇ

P1(ω) = �(ω)
a1 + a2�(ω)

ı1(ω) +  J1
1

(ω) + J1
2

(ω)
, P2(ω) =  �(ω)

(1 − a1)  + (1 −  a2)�(ω)

ı2(ω) +  J2
1

(ω) +  J2
2

(ω)

q1(0) =
a1 + a2E[�(ω)]

1 +  j1
1

+ j1
2

,  q2(0) =
(1 − a1)  + (1  − a2)E[�(ω)]

1 +  j2
1

+ j2
2

,

where E[�(ω)] = �(u)�(u) +  �(d)�(d).

Proof. See Appendix A.8 �

7 The market clearing condition Cg
1

(�) + Cg
2

(�) = ıg (�) together with expression (6b), implies that cg
1
(�) + cg

2
(�) = 1.

8 Note that Appendix A reports the  equilibrium expressions for the  modified variables (6a)–(6c).
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It  is important to point out that, when Jg
h

(�) > 0, the utility function will not guarantee non-negative consumption. In Appendix A we

show that the equilibrium consumption is  positive if and only if:

˛g
1
(1  +  jg

2
) > jg

1
˛g

2
�(�) (8)

˛g
1
jg
2

< ˛g
2
�(�)(1 + jg

1
) (9)

Equivalently (taking into account expression (6c)

˛g
1
[ıg(�) + Jg

2
(�)] > Jg

1
(�)˛g

2
�(�) (10)

˛g
1
Jg
2

(�)  < ˛g
2
�(�)[ıg(�) +  Jg

1
(�)] (11)

Note that the expressions in Proposition 1 depend on �(0), �(u) and �(d). Then, to solve the model we need to  know the value of  these

stochastic weights. We deal with this issue in  section 2.5.

In the following result, we  obtain the expressions for optimal portfolio holdings of the households:

Proposition 2. When the households have a generalized logarithmic utility function, their optimal portfolio holdings in any inefficient equilib-

rium, �(u) /= �(d), are given by

s1
1(1) =

j1
1
(1 − a1)  + (1 +  j1

2
)(1 −  a2)

a1 − a2
, s2

1(1) = −
j2
1
a1 + (1 + j2

2
)a2

a1 −  a2
(12)

s1
2(1) = −

j1
2
(1 − a2) + (1 +  j1

1
)(1 − a1)

a1 − a2
,  s2

2(1) =
j2
2
a2 + (1  + j2

1
)a1

a1 −  a2
(13)

Moreover, in any efficient equilibrium, �(u) =  �(d) =  k,  there is a continuum of optimal portfolio holdings of the form,

s1∗
1 (1) =  �

(1 + j2
1

+ j2
2
) −  [(1 − a1) + (1 − a2)k][s2∗

1
(1) + j2

1
]

a1 − a2k
−  j11 (14)

s1∗
2 (1) =  (1 + j11) − �

(1 +  j2
1

+ j2
2
)  − [(1 −  a1) +  (1 − a2)k][s2∗

2
(1) +  1 − j2

1
]

a1 − a2k
,  (15)

where � = (1 +  j1
1

+ j1
2
/(1 + j2

1
+ j2

2
)).

Proof. See Appendix A.  �

Note that the expressions for the optimal portfolio holdings in  any inefficient equilibrium of Proposition 2 can be generalized to,

sg
h
(1) =

jg
h
(1 −  ˛g

h
) +  (1 + jg

ĥ
)(1 − ˛g

ĥ
)

˛g
h

−  ˛g

ĥ

, ∀g  =  1, 2; ∀h = 1, 2 (16)

where ĥ represents the other household.

We now provide some remarks about sg
h
(1). First of all, note that sg

h
(1) is decreasing in the marginal propensity to  consume of the

household h,  ˛g
h
. Namely, the greater is his propensity to consume, the more he prefers consuming goods than acquiring stocks. On the

other hand, sg
h
(1) is  increasing in Jg

h
(recall that variations in  jg

h
are  only due to variations in Jg

h
) if and only if ˛g

h
> ˛g

ĥ
; otherwise it is

decreasing.9 This can be explained by noting that, when Jg

ĥ
increases, the household ĥ tries to compensate his lower ˛g

ĥ
in the utility

function with a greater consumption, which means acquiring less assets.

Next note that when Jg
h

(�) ≥  0, ∀h = 1, 2,  the household with the lowest marginal propensity to consume will take the short position.

However, when Jg
h

(�) < 0 this will not always be true, since there are examples in which both households acquire positive quantities of

the stocks. Otherwise, when Jg
h

(�) ≤ 0, sg
h
(1) does not  depend on the state of the economy. To see this, notice that  when Jg

h
(�) > 0, the

parameter Jg
h

of one of the households must satisfy (10) and (11) (or equivalently, jg
h

must satisfy (8) and (9)). Then, the parameter jg
h

of one

of the households will fall  within a  range whose boundaries depend on �(�). Therefore, sg
h
(1) must depend on the state of the economy.

Finally, let sg
h
(1)CD = (1 − ˛g

ĥ
/(˛g

h
− ˛g

ĥ
))  be the expression for the optimal portfolio holdings in  any inefficient equilibrium in the BCLP

(2008) framework. Then, sg
h
(1) =  sg

h
(1)CD if and only if Jg

h
= −(1  − ˛g

ĥ
/(1 − ˛g

h
))Jg

ĥ
. Note that Jg

ĥ
can be  either zero (and then Jg

h
= 0, ∀h  =  1, 2),

or different from zero. In this later case, one household has J  >  0 and the other has J < 0, but their optimal portfolio holdings in  any inefficient

equilibrium are the same as when they have J  =  0.

2.4. The portfolio constraint

We consider next a  constraint imposed on the fraction of wealth household 2 is  permitted to invest in  the second stock:

q2(0)s2
2(1) ≥ 
W2(0) (17)

9 Note that if we  use the Arrow–Pratt risk aversion coefficient, the higher Jh , the more risk preferring the household. This would imply that the greater the risk-preference

of  the household with the lowest marginal propensity to  consume, the lower is  the quantity of stocks he acquires in equilibrium. However, this is not surprising and does not

constitute  a counterintuitive result because this risk aversion measure is  correct with utility functions with one argument, but with utility functions with several variables

(such  as ours that considers two commodities) extensions of the previous risk aversion measure allows for alternative marginal propensity to consumption.
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where household 2 initial wealth is  defined as the value of his portfolio,

W2(0)  = [q1(0) + P1(0)ı1(0)]s1
2(0) + [q2(0) + P2(0)ı2(0)]s2

2(0)

and 
 > 0  is endogenously determined. It  can be shown that that,10


  = A + BE[�(ω)] (18)

where

A =
(1 −  a1)[a1(1 − j2

1
)  + a2j2

2
]

(1 + j2
1

+ j2
2
)(a1 − a2)(1  + (1/ˇ))[(a2�∗/(1 + j1

1
+ j1

2
)
2
)  + ((1 − a2)�∗/(1 +  j2

1
+ j2

2
)
2
) + 
  ]

B =
(1 −  a2)[a1(1 − j2

2
) + a2j2

2
]

(1 + j2
1

+ j2
2
)(a1 − a2)(1 +  (1/ˇ))[(a2�∗/(1 + j1

1
+ j1

2
)
2
)  +  ((1 −  a2)�∗/(1 +  j2

1
+ j2

2
)
2
) +  
 ]

�∗ =
˛g

1
{sg

2
(0)(1 + jg

1
+  jg

2
) −  [(jg

1
+  jg

2
)sg

1
(0) + jg

1
]}

˛g
2
(sg

1
(0) + jg

1
)

2.5. Multiplicity of equilibrium with portfolio constraints

Next we find the value of the stochastic weights. In Appendix A we show that,

�(0) = (1 + ˇ)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

�∗ −

(1 + j2
1

+ j2
2
)(a1 − a2)

[

a2�∗

(1+j1
1
+j1

2
)
2 +

(1−a2)�∗

(1+j2
1
+j2

2
)
2 + 


]




(1 − a2)[a1(1 −  j2
2
) +  a2j2

2
]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

− ˇ
1 −  a1

1 −  a2
,  (19)

where 
 is given by  the long expression (A30) reported in Appendix A, and �(u) and �(d) solve the following system,

E[�(ω)] = �(u)�(u) + �(d)�(d) =

(

1 +
1

ˇ

)

�∗ −
�(0)

ˇ

E[1/�(ω)] =
�(u)

�(u)
+

�(d)

�(d)
=

1

�(0)
+

1 +  ˇ

ˇ

a1

a2

(

�∗

�(0)
− 1

)

(20)

Given these expressions, we can now state the following result,

Proposition 3. With complete markets and generalized logarithmic utility, there is a multiplicity of inefficient equilibria in the economy in

which the portfolio constraint is binding. Without the portfolio constraint, the equilibrium is unique and Pareto efficient.

Proof. When �(0) =  �*, (20) has a  unique solution: �(u) =  �(d) =  �*.  In this case the portfolio constraint is  not binding and the equilibrium is

unique and Pareto efficient. But for some values of 
 , it is  necessarily the case that �(0) /= �*. Then the system of equations (20) is  quadratic

and admits two solutions. In this case, as desired, there exist two inefficient equilibrium points in which the portfolio constraint is binding.

�

3. Incomplete markets

In this section we add a  new state of the world, ω =  m (“middle”), so that in period 1, ω =  u,  m, d  (and � =  0, u, m, d) occurring with

probabilities �(ω). The rest of the economic environment remains the same, and in  particular, there are still two  stocks–one fewer than

there is states of the world.

The households’ portfolio holdings in  Proposition 2 are  the portfolio holdings supporting equilibrium in the economy with incomplete

markets. And the expressions for �*, 
 and �(0) are the same as those for complete markets. However, �(u), �(m)  and �(d) solve now the

following system,

E[�(ω)] = � (u) � (u) +  � (m) � (m) + � (d) � (d) =

(

1 +
1

ˇ

)

�∗ −
� (0)

ˇ

E[1/�(ω)] =
� (u)

� (u)
+

� (m)

� (m)
+

� (d)

� (d)
=

1

� (0)
+

1 + ˇ

ˇ

a1

a2

(

�∗

� (0)
− 1

)

(21)

The proof appears in  Appendix B.

Similarly to the previous case, when �(0) = �*, (21) has a  unique solution: �(u) =  �(m) = �(d) =  �*.  Thus, the equilibrium is unique and

Pareto efficient, and the portfolio constraint is not  binding. But when, for some values of 
 , �(0) /= �*,  the system of equations (21) has a

continuum of solutions. Hence, there is  a  continuum of inefficient equilibria in which the portfolio constraint is binding. We can therefore

state the following proposition,

10 See Appendix A.
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Proposition 4. With incomplete markets and generalized logarithmic utility, there is a continuum of inefficient equilibria in which the portfolio

constraint is binding. Without the portfolio constraint, the equilibrium is unique and Pareto efficient.

Proof. See Appendix B.  �

4. Conclusions

We  can conclude that the multiplicity of equilibria obtained by BCLP (2008) is robust to  a  generalized specification of the log-linear

utility function. The fact that  multiplicity of equilibria under portfolio constraints is  a  valid result under decreasing, constant, and increasing

relative risk aversion is  an important result to better understand financial market prices. This is a first extension of BCLP model, but much

more research needs to  be done to fully investigate (and understand) the potential consequences of portfolio constraints on asset allocation

and asset pricing.
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Appendix A.

A.1. The Extended Form Equations (EFEs)

The basic system of EFEs describing the financial equilibrium consists of the usual first-order conditions (FOCs), no-arbitrage conditions

(NACs), and spot budget constraints (SBCs) for both households, together with the market clearing conditions (MCCs) for goods and stocks.

FOC:

˛g
h

Cg
h

(0) + Jg
h

(0)
=  �h(0)Pg(0) (A1)

ˇ�(ω)˛g
h

Cg
h

(ω) +  Jg
h

(ω)
= �h(ω)Pg(ω) (A2)

NAC:

−�1(0)qg(0) +  �1(u)Pg(u)ıg(u) + �1(d)Pg(d)ıg(d) =  0 (A3)

−�2(0)qg(0) +  �2(u)Pg(u)ıg(u) + �2(d)Pg(d)ıg(d) − �  = 0, (A4)

where � =

{

0, g =  1

�, g =  2

SBC:

P1(0)C1
h (0) + P2(0)C2

h (0) +  q1(0)s1
h(1) +  q2(0)s2

h(1) − [q1(0) + P1(0)ı1(0)]s1
h(0) − [q2(0) + P2(0)ı2(0)]s2

h(0) =  0 (A5)

P1(ω)C1
h (ω) +  P2(ω)C2

h (ω) − P1(ω)ı1(ω)s1
h(1) − P2(ω)ı2(ω)s2

h(1) = 0 (A6)

MCC:

Cg
1

(�) +  Cg
2

(�) = ıg(�) (A7)

sg
1
(1) + sg

2
(1) = 1 (A8)

A.2. Equilibrium in consumer markets

Rewriting the FOCs given by (A1) and (A2) and using the definition of stochastic weight given by (7) we have,

Cg
h

(�) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

˛g
h
�h(�)

Pg(�)ˇ
− Jg

h
(�), � = 0

�h(�)�(�)˛g
h

Pg(�)
− Jg

h
(�), � = u, d

(A9)

Solving for Pg(0) in (A9),  summing over h and bearing in mind that now �1(�) = 1 and �2(�) =  �(�),

Pg(0) =
˛g

1
+ ˛g

2
�(0)

[Cg
1

(0) + Jg
1

(0)  + Cg
2

(0) +  Jg
2

(0)]ˇ
(A10)
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Replacing (A10) in expression (6a) and taking into account expressions (6b) and (6c),

pg(0) =
˛g

1
+ ˛g

2
�(0)

(1 + jg
1

+  jg
2
)ˇ

Proceeding the same way for Pg(ω) in (A9),  we obtain

pg(ω) = �(ω)
˛g

1
+  ˛g

2
�(ω)

1 + jg
1

+ jg
2

The last two expressions are the equilibrium prices of the goods:

pg(�)  =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

˛g
1

+ ˛g
2
�(0)

(1 + jg
1

+  jg
2
)ˇ

, � = 0

�(ω)
˛g

1
+  ˛g

2
�(ω)

1 +  jg
1

+ jg
2

, � = u, d

(A11)

Dividing the expression (A9) by ıg(�), taking into account expressions (6a)–(6c) and replacing (A11) in the resultant expression, we

obtain the equilibrium consumption of household 1:

cg
1
(�) =

˛g
1
(1 + jg

2
)  − jg

1
˛g

2
�(�)

˛g
1

+ ˛g
2
�(�)

(A12)

From the market clearing condition (A7) and expression (6b), we have that cg
1
(�) + cg

2
(�) = 1.  Hence, the equilibrium consumption of

household 2 is,

cg
2
(�) =

˛g
2
�(�)(1 + jg

1
) − ˛g

1
jg
2

˛g
1

+ ˛g
2
�(�)

(A13)

Next, note that when Jg
h

(�) > 0,  the utility function by itself does not  guard against negative consumption. It  is easy to show that (A12)

is positive if and only if ˛g
1
(1 + jg

2
) > jg

1
˛g

2
�(�), and (A13) is  positive if  and only if ˛g

1
jg
2

< ˛g
2
�(�)(1 +  jg

1
). Then the parameter jg

h
of one of the

households must fall  within a  range whose boundaries depend on �(�).

A.3. Equilibrium in financial markets

Rewriting the period one spot budget constraint (SBC) of the household 1 given by (A6) taking into account the expressions (6a) and

(6b),

p1(ω)c1
h(ω) +  p2(ω)c2

h(ω) −  p1(ω)s1
h(1) −  p2(ω)s2

h(1) =  0

Replacing (A11),  (A12) and (A13) in  the last expression and taking into account that ˛1
1

+  ˛2
1

= a1 + (1 −  a1) = 1,  we have,

�(ω)

{

1  −
˛1

1
+  ˛1

2
�(ω)

1 + j1
1

+ j1
2

[s1
1(1) +  j11] −

˛2
1

+  ˛2
2
�(ω)

1 + j2
1

+ j2
2

[s2
1(1) + j21]

}

= 0

Equivalently,

˛1
1

+  ˛1
2
�(ω)

1 + j1
1

+ j1
2

x +
˛2

1
+  ˛2

2
�(ω)

1 + j2
1

+ j2
2

y  = 1, (A14)

where x = s1
1
(1) +  j1

1
and y  =  s2

1
(1)  + j2

1
.

Note that when �(u) /= �(d); i.e. when an inefficient equilibrium occurs, (A14) is  a  system of two equations with two unknowns:

⎧

⎪

⎨

⎪

⎩

a1 + a2�(u)

1 + j1
1

+ j1
2

(1 − a1) +  (1 − a2)�(u)

1 + j2
1

+  j2
2

a1 + a2�(d)

1  + j1
1

+  j1
2

(1 − a1) +  (1 − a2)�(d)

1 + j2
1

+ j2
2

⎫

⎪

⎬

⎪

⎭

{

x

y

}

=

{

1

1

}

The determinant of the matrix Q  above is given by

det(Q ) =
(a1 − a2)[�(d) −  �(u)]

(1 + j1
1

+  j1
2
)(1 +  j2

1
+ j2

2
)

/= 0

Solving the system, we obtain the optimal portfolio holdings of the households in any inefficient equilibrium:

s1
1
(1) =

j1
1
(1 − a1) + (1 +  j1

2
)(1 −  a2)

a1 − a2
, s2

1(1) = −
j2
1
a1 + (1 + j2

2
)a2

a1 − a2

s1
2
(1) = −

j1
2
(1 − a2) + (1  + j1

1
)(1  − a1)

a1 − a2
,  s2

2(1) =
j2
2
a2 + (1 + j2

1
)a1

a1 − a2

(A15)

So, clearly, when the stochastic weights are  identical across the two states of the world �(u) =  �(d), the determinant of Q is  zero and the

matrix is not invertible. Hence, one of the stocks is redundant, and the portfolio holdings of households in each stock are indeterminate.
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If  �(u) = �(d)=k > 0, the expression (A14) becomes,

˛1
1

+ ˛1
2
k

1 + j1
1

+ j1
2

[s1
1(1) + j11] +

˛2
1

+ ˛2
2
k

1 +  j2
1

+ j2
2

[s2
1(1) + j21] = 1

Solving for s1
1
(1) we have,

s1∗
1 (1) =  �

(1 + j2
1

+ j2
2
) − [(1 − a1) + (1 −  a2)k]

[

s2∗
1

(1) + j2
1

]

a1 −  a2k
− j11

where � = (1 +  j1
1

+ j1
2
/(1  + j2

1
+  j2

2
)).

According to the market clearing condition (A8),

s1∗
2 (1) =  (1  + j11) − �

(1 +  j2
1

+ j2
2
)  − [(1 −  a1) +  (1 − a2)k] [s2∗

2
(1) + 1 −  j2

1
]

a1 − a2k

Next, we rewrite the no-arbitrage condition (NAC) of household 1,  given by (A3), taking into account expression (6a),  and bearing in

mind that �1(�) = ˇ, since �1(�) =  1. Solving for qg(0) in the resultant expression, we have,

qg(0) = pg(u) +  pg(d) (A16)

Replacing (A11) in (A16),  and defining E[�(ω)] =  (�(u)�(u)) + (�(d)�(d)), we obtain the equilibrium prices of the financial assets:

qg(0) =
˛g

1
+ ˛g

2
E[�(ω)]

1 + jg
1

+ jg
2

(A17)

A.4. The Reduced Form Equations (RFEs)

It is now clear that, with the exception of the optimal portfolio holdings, the equilibrium results of the model depend on �(�). We  obtain

the value for these stochastic weights from the RFEs. The RFEs are three equations that can be obtained from the EFEs.

(i) The first RFE:

Rewriting SBC of the household 1 given by  (A5) and (A6) taking into account the expressions (6a) and (6b),

p1(0)c1
1(0) +  p2(0)c2

1(0) + q1(0)s1
1(1) + q2(0)s2

1(1) − [q1(0) +  p1(0)]s1
1(0) −  [q2(0) + p2(0)]s2

1(0)  =  0

p1(u)c1
1(u) +  p2(u)c2

1(u) −  p1(u)s1
1(1) −  p2(u)s2

1(1) =  0

p1(d)c1
1(d) + p2(d)c2

1(d) − p1(d)s1
1(1)  − p2(d)s2

1(1) =  0

adding these three expressions,

p1(0)c1
1(0)  + p2(0)c2

1(0)  + p1(u)c1
1(u)  + p2(u)c2

1(u)  + p1(d)c1
1(d) +  p2(d)c2

1(d) −  q1(0)s1
1(0) −  q2(0)s2

1(0) −  p1(0)s1
1(0) − p2(0)s2

1(0)

+ q1(0)s1
1(1) + q2(0)s2

1(1) − p1(u)s1
1(1) − p2(u)s2

1(1) −  p1(d)s1
1(1) − p2(d)s2

1(1)  = 0

and replacing in this resultant expression the equilibrium prices of the financial assets given by (A17),

p1(0)c1
1(0) + p2(0)c2

1(0)  + p1(u)c1
1(u)  + p2(u)c2

1(u)  + p1(d)c1
1(d) +  p2(d)c2

1(d) −  p1(u)s1
1(0) − p1(d)s1

1(0)  − p2(u)s2
1(0)

− p2(d)s2
1(0) − p1(0)s1

1(0) −  p2(0)s2
1(0) +  p1(u)s1

1(1) + p1(d)s1
1(1) +  p2(u)s2

1(1) + p2(d)s2
1(1) −  p1(u)s1

1(1) − p2(u)s2
1(1)

− p1(d)s1
1(1) − p2(d)s2

1(1) = 0

we obtain,

p1(0)c1
1(0) + p2(0)c2

1(0)  + p1(u)c1
1(u)  + p2(u)c2

1(u)  + p1(d)c1
1(d) +  p2(d)c2

1(d) −  p1(u)s1
1(0) − p1(d)s1

1(0)

− p2(u)s2
1(0) −  p2(d)s2

1(0) − p1(0)s1
1(0) − p2(0)s2

1(0) =  0

that we summarize in

∑

�=0,u,d

pg(�)cg
1
(�) = [pg(0) +  pg(u) + pg(d)]sg

1
(0)

Replacing (A11) and (A12) in  the last expression, then simplifying (in particular, using the fact that sg
1 (0) + sg

2 (0) = 1) and multiplying

the resulting equation by  -1,  we obtain the first RFE (see the system of the three RFEs below).

(ii) The second and third RFEs:

Rewriting the NAC of household 2, given by  (A4), taking into account the expression (6a),

−�2(0)q1(0) + �2(u)p1(u) + �2(d)p1(d) = 0 (A18)
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−�2(0)q2(0) + �2(u)p2(u) + �2(d)p2(d) − � =  0 (A19)

Solving for q1(0) in  (A18),  replacing (A11) into the resultant expression, and taking into account the definition of stochastic weight

given by (7), we  have,

q1(0) =
�(0)

�(u)
�(u)

a1 + a2�(u)

1 + j1
1

+ j1
2

+
�(0)

�(d)
�(d)

a1 + a2�(d)

1 + j1
1

+ j1
2

(A20)

Solving for q2(0) in (A19) and proceeding the same way, we have,

q2(0) =
�(0)

�(u)
�(u)

(1 −  a1) +  (1 − a2)�(u)

1 +  j2
1

+ j2
2

+
�(0)

�(d)
�(d)

(1 − a1)  + (1 −  a2)�(d)

1 + j2
1

+ j2
2

−
��(0)

ˇ
(A21)

Equating the expressions (A20) and (A21) to  the expression we obtained for the equilibrium prices of the financial assets, given by

(A17), and defining � = (��(0)/ˇ), we obtain the second and third RFEs (see the system of the three RFEs below).

(iii) The system of the three RFEs:

The three RFEs form the following system (SY hereafter).

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

−

(

1  +
1

ˇ

)

˛g
1
sg

2
(0) +

[

�(0)

(1 + jg
1

+ jg
2
)ˇ

+
�(u)�(u) +  �(d)�(d)

1 + jg
1

+ jg
2

]

[˛g
2
sg

1
(0)  + ˛g

2
jg
1
]  +

(

1  +
1

ˇ

)

˛g
1
sg

1
(0)

jg
1

+ jg
2

1 + jg
1

+ jg
2

+

(

1 +
1

ˇ

)

˛g
1
jg
1

1

1 + jg
1

+ jg
2

[

1  −
�(0)

�(u)

]

�(u)
a1 +  a2�(u)

1  + j1
1

+ j1
2

+

[

1 −
�(0)

�(d)

]

�(d)
a1 + a2�(d)

1 + j1
1

+ j1
2

[

1 −
�(0)

�(u)

]

�(u)
(1 − a1)  + (1 − a2)�(u)

1 + j2
1

+ j2
2

+

[

1 −
�(0)

�(d)

]

�(d)
(1 − a1)  + (1 − a2)�(d)

1  +  j2
1

+ j2
2

+ �

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

=

{

0

0

0

}

When �(�) = k, ∀�; i.e. in a  Pareto efficient situation, the second EFR holds, the third equation holds if and only if � =  0,  and from the

first RFE we can obtain the expression for k:

k = �∗ =
˛g

1
{sg

2
(0)(1 + jg

1
+  jg

2
) − [(jg

1
+  jg

2
)sg

1
(0) + jg

1
]}

˛g
2
(sg

1
(0) + jg

1
)

(A22)

Therefore, when �(�) =�*, � =  0. This implies that there is a  unique Pareto efficient equilibrium, and in  this equilibrium the portfolio

constraint is not binding. As BCLP (2008) do, because the existence of �* >  0 is so central to our analysis of SY, we assume that (A22)

obtains.

A.5. Tailoring the portfolio constraint

Consider the specific portfolio constraint

q2(0)s2
2(1) ≥ 
W2(0),  (A23)

where W2(0) is the value of the initial portfolio of the household 2:

W2(0) = [q1(0) + P1(0)ı1(0)]s1
2(0) + [q2(0) + P2(0)ı2(0)]s2

2(0) (A24)

When � > 0 this constraint is binding and (assuming that W2(0) >  0) we can solve for 
 in (A23),


  =
q2(0)s2

2
(1)

W2(0)
(A25)

But first, we rewrite (A24) taking into account expression (6a),

w2(0) = [q1(0) + p1(0)]s1
2(0) + [q2(0) +  p2(0)]s2

2(0)

Replacing (A11) and (A17) into the last expression, we have,

w2(0) =

[

a1 + a2E[�(ω)]

1 + j1
1

+ j1
2

+
a1 + a2�(0)

(1 +  j1
1

+ j1
2
)ˇ

]

s1
2(0) +

[

(1 − a1)  + (1 −  a2)E[�(ω)]

1 + j2
1

+ j2
2

+
(1 − a1) +  (1 − a2)�(0)

(1 + j2
1

+ j2
2
)ˇ

]

s2
2(0) (A26)

Next, solving for E[�(ω)] in the first RFE, we  have,

E[�(ω)] =

(

1  +
1

ˇ

)

�∗ −
�(0)

ˇ
(A27)

Equivalently,

�(0) = (1 + ˇ)�∗ − ˇE[�(ω)] (A28)

Replacing (A28) into (A26), we  obtain,

w2(0) =

(

1 +
1

ˇ

)

[

a2�∗

(1 + j1
1

+ j1
2
)
2

+
(1 −  a2)�∗

(1 + j2
1

+ j2
2
)
2

+  


]

,  (A29)
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where


  =
a2�∗

(1 + j1
1

+ j1
2
)
2

s1
2(0)(j11 + j12)  +

(1 − a2)�∗

(1 + j2
1

+ j2
2
)
2

s2
2(0)(j21 + j22)  +

j1
1
(a2�∗ + a1) +  (j1

1
+ j1

2
)a1s1

1
(0)

(1 + j1
1

+ j1
2
)
2

+
j2
1
((1 − a2)�∗ + (1 − a1))  + (j2

1
+ j2

2
)(1  − a1)s2

1
(0)

(1 + j2
1

+ j2
2
)
2

(A30)

Now replacing the equilibrium expression for s2
2
(1) given in (A15),  and the expressions (A17) and (A29) into (A25),  we obtain


 = A + BE[�(ω)] (A31)

where

A =
(1 − a1)[a1(1 − j2

1
) + a2j2

2
]

(1 + j2
1

+ j2
2
)(a1 − a2)(1 + (1/ˇ))[(a2�∗/(1 + j1

1
+ j1

2
)
2
)  + ((1 −  a2)�∗/(1 + j2

1
+ j2

2
)
2
)  + 
 ]

B =
(1 − a2)[a1(1 −  j2

2
) +  a2j2

2
]

(1 +  j2
1

+ j2
2
)(a1 − a2)(1 +  (1/ˇ))[(a2�∗/(1 +  j1

1
+ j1

2
)
2
)  + ((1 − a2)�∗/(1 + j2

1
+ j2

2
)
2
)  +  
 ]

A.6. Solving for  the stochastic weights

Solving for E[�(ω)] in  (A31) and replacing the resulting expression into (A28), we obtain

�(0) = (1 + ˇ)

{

�∗ −
(1 +  j2

1
+ j2

2
)(a1 − a2)[(a2�∗/(1 + j1

1
+ j1

2
)
2
) +  ((1 −  a2)�∗/(1 + j2

1
+  j2

2
)
2
)  + 
  ]


(1 − a2)[a1(1 − j2
2
)  + a2j2

2
]

}

−  ˇ
1 −  a1

1 −  a2
(A32)

Defining E[1/�(ω)] =  (�(u)/�(u)) +  (�(d)/�(d)) and from the second RFE, we have,

E[1/�(ω)] =
1

�(0)
+

a1

a2

[

E[�(ω)]

�(0)
− 1

]

Replacing (A27) into the last expression, we  obtain,

E[1/�(ω)] =
1

�(0)
+

1 + ˇ

ˇ

a1

a2

(

�∗

�(0)
− 1

)

(A33)

Hence, we must find the values of �(u) and �(d) that  solve the system defined by (A27) and (A33):

E[�(ω)] = �(u)�(u) + �(d)�(d) =

(

1 +
1

ˇ

)

�∗ −
�(0)

ˇ

E[1/�(ω)] =
�(u)

�(u)
+

�(d)

�(d)
=

1

�(0)
+

1 + ˇ

ˇ

a1

a2

(

�∗

�(0)
− 1

)

�

Appendix B.

The procedure in the incomplete markets case is the same as in Appendix A, except that now we must assume three (period-1) spot

budget constraints, corresponding to ω =  u, m, d. Accordingly, the number of stochastic weights increases from 3 to 4 (one for period 0 and

one for each of three possible states ω). In this case, the equation determining terminal portfolio holdings, which is  equivalent to  (A14),

takes the form,

⎛

⎜

⎜

⎜

⎜

⎜

⎝

a1 + a2�(u)

1 + j1
1

+ j1
2

(1 − a1) + (1 − a2)�(u)

1 + j2
1

+ j2
2

a1 + a2�(m)

1 + j1
1

+ j1
2

(1 − a1) + (1 − a2)�(m)

1 + j2
1

+  j2
2

a1 + a2�(d)

1 + j1
1

+ j1
2

(1 − a1) + (1 − a2)�(d)

1 + j2
1

+ j2
2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(

x

y

)

=

(

1

1

)

It  is easy to  verify that the households’ portfolio holdings reported in Proposition 2 are the portfolio holdings supporting equilibrium

in the economy with incomplete markets.

Moreover, as before, the logic of the reduction of the EFEs leads to  just three RFEs,

−

(

1 +
1

ˇ

)

˛g
1
sg

2
(0) +

[

�(0)

(1  + jg
1

+  jg
2
)ˇ

+

∑

ω=u,m.d

�(ω)�(ω)

1 +  jg
1

+  jg
2

]

[˛g
2
sg

1
(0) + ˛g

2
jg
1
]

+

(

1 +
1

ˇ

)

˛g
1
sg

1
(0)

jg
1

+ jg
2

1 + jg
1

+  jg
2

+

(

1 +
1

ˇ

)

˛g
1
jg
1

1

1 + jg
1

+  jg
2

= 0
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∑

ω=u,m,d

[

1  −
�(0)

�(ω)

]

�(ω)
a1 + a2�(ω)

1 +  j1
1

+ j1
2

= 0

∑

ω=u,m.d

[

1 −
�(0)

�(ω)

]

�(ω)
(1 −  a1) +  (1 − a2)�(ω)

1 +  j2
1

+ j2
2

+ � = 0

The expressions for �*,  
 and �(0) are the same as in  the complete markets case, and they are given by (A22), (A31) and (A32) respectively.

However, we have to be careful now because,

E[�(ω)] = �(u)�(u) + �(m)�(m) + �(d)�(d)

E[1/�(ω)] =
�(u)

�(u)
+

�(m)

�(m)
+

�(d)

�(d)

Hence, when the financial markets are  incomplete, we must find the values of �(u), �(m) and �(d) that solve the following system:

E[�(ω)] = �(u)�(u) + �(m)�(m) + �(d)�(d) =

(

1 +
1

ˇ

)

�∗ −
�(0)

ˇ

E[1/�(ω)] =
�(u)

�(u)
+

�(m)

�(m)
+

�(d)

�(d)
=

1

�(0)
+

1 + ˇ

ˇ

a1

a2

(

�∗

�(0)
− 1

)

�
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