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Abstract 

Researching on urban heat island (UHI) is a hot topic among urban designers due to its adverse impacts. This paper 

focuses on studying spatial and temporal dynamicity of surface UHI in the Colombo district based on 

correlations between land surface temperatures (LST) with normalized difference vegetation index (NDVI) and 

normalized difference built-up index (NDBI) using Landsat data from 1988 to 2019. Image processing and 

statistical analysis were done using QGIS Desktop 

3.16.0 and RStudio softwares respectively. The mean of LSTs were continuouslly incerasing during 1988 - 2019. 

The highest LSTs were observed at the Colombo harbour area in both 1997 and 2007. After initiation of the port 

city project in 2015, these values have been increased rapidly around the Colombo port city area. The 

expansion of UHI area was 71.55% between 1988 to 2019 and they were distributed from the western coastal 

belt to the east along with the central part of the district. The urban hot spots (UHS) were compacted at harbour 

and port city area. Additionally, new hot spots have been generated since 2017 adjacent to “Seethagama”. These 

small pockets are too hot and not very conducive for human settlements. Parking lots, compacted built-up areas, 

and ongoing industrial construction areas influence the formation of UHS. Considering this critical situation, it is 

highly recommended that to move mitigation strategies like urban greening methods, cooling pavements and 

cooling roofs etc. These results could be used towards a well-designed urban planning system to maintain the 

ecological balance within the study area. 
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INTRODUCTION 

Scientists believe the climate has been warming and there are potential impacts of increasing 

urban heat island (UHI) effect since the 19th century, due to exponential growth of 

urbanization, industrialization, and environmental issues (Chen et al., 2003; Kim et al., 

2005; Tan et al., 2010). UHIs contribute to health risks, high energy demand, and negative 

effect on the environment. Thus, investigating this scenario has become an essential need 

of urban planning (Estoque et al., 2017). Landscape with built-up and bare land enhance the 

effect while water bodies and urban greenness reduce the intensity of UHI (Amiri et al., 

2009; Yang et al., 2016; Zhang et al., 2009). 

The canopy layer heat island (CLHI), boundary layer heat island (BLHI), and surface urban 

heat island (SUHI) are three-layer categories of UHIs. The SUHI occurs due to sun heat, 

roofs and pavement being hotter than the air while shaded surfaces are close to air 

temperatures (Reducing Urban Heat Islands: Compendium of Strategies Urban Heat Island 

Basics, 2008; Yuan et al., 2007). Monitoring spatial-temporal changes is the most popular 

way to observe this phenomenon worldwide (Chen et al., 2006; Li et al., 2006; Manawadu 

& Liyanage, 2008; Sharma & Joshi, 2014; Sultana Parvin & Abudu, 2017). Remote sensing 

(RS) technology enables us to investigate the dynamicity of landscape spatial patterns. RS-

derived LST (Land Surface Temperature) data have been used to examine UHI 

characteristics with surface biophysical parameters such as vegetation distribution, 
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impervious surface, and soil (Guo et al., 2015). 

The Landsat project continuously provides high-quality resolution satellite images since 

1972. Landsat 5 TM (launched 1984) and Landsat 8 OLI (launched 2013) have been imaging 

the earth surface in the thermal infrared band with resolution 120m and 100m respectively 

(Barsi et al., 2006; U.S. Geological Survey, 2016). Researchers developed different 

algorithms to retrieve LST data from these Landsat imageries such as temperature/emissivity 

separation method, split-window method, mono-window method, and the single-channel 

method (Liu et al., 2011). 

Urban hot spots (UHS) are recognized as extremely high-temperature areas and these spots 

generate due to human activities inside urban heat islands (Chen et al., 2006; Coutts et al., 

2016; Rodriguez Lopez et al., 2017). Hence, researching these spot patterns is an important 

task in present urban sustainability planning. 

There are more evidence that conclude that Sri Lanka’s climate has been changing over 

decades. Scientists noticed that annual mean air temperature increased by 0.016℃ during 

1961-1990, and mean annual precipitation decreased by 144 𝑚𝑚 during this period 

compared to 1931-1960. Furthermore, they predicted mean temperature may be elevated 

by approximately 0.9-4℃ over baseline (1961-1990) by 2100. Thus, these worming trends 

verify the elevation of both greenhouse effect and local heat island effect due to rapid 

urbanization (Gerald et al., 2015). Additionally, the researchers have conducted well-

organized UHI investigations regarding Colombo city, Sri Lanka. Emmanuel (2005) 

discussed that trend of hard land cover reduced the level of thermal comfort, especially 

during night time, and observed more significant thermal discomfort in the center part of the 

city than rural areas. 

Aim of the Study 

In previous studies, scholars found that the formation of SUHIs in the western part declines 

towards the Northern and Southern parts of Colombo city (Emmanuel, 2005; Manawadu et 

al., 2008). Considering the administrative boundaries of Colombo, urban hot spots patterns 

changes in the west-to-east direction. However, these results were concluded based on two 

Landsat images (namely from 1997 and 2017) (Ranagalage et al., 2018). Though the 

cooling effect of sea breezing can control UHIs (Johansson et al., 2006), it is doubtful how 

this will be valid for rapidly constructing areas, like Colombo port city. In the current study, 

the focus is to identify UHI zones and UHS patterns with the help of LST data from 1988 to 

2019. Here we use LST, NDVI, NDBI and UHS as parameters for each Landsat image. 

Current research can also provide a better understanding of the spatial and temporal 

dynamicity in the Colombo district. 

 

METHODS 

The Study Area Colombo is a low landed district located in the western province of Sri 

Lanka, between 6°42' - 6°58' North latitude and 79°50' - 80°13' East longitude ranges (Fig. 

1). It has two main monsoon seasons and two inter- monsoons and these monsoon seasons 

cause hot and humid climate changes (Ranagalage et al., 2018). The main monsoons blow 

southwest from late May to late September and from the northeast from late November to 

mid- February. During the inter-monsoon period (between March and May) temperatures are 

at their peak levels (Johansson et al., 2006). The mean annual rainfall is about 2300 𝑚𝑚 and 
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average annual temperature is 28 ℃ (Ranagalage et al., 2017). Thus, the season from 

December to early March is identified as the driest season of the Colombo district. 

Higher rate of population, artificial surfaces, and low vegetation cover are the main 

characteristics of this region (Manawadu et al., 2008). Most recent studies have shown 

these characteristics lead to the formation of UHIs. 

 

 

Landsat Images 

The Landsat-5 TM and Landsat-8 OLI/TIRS satellite images were used to derive the LST, 

NDVI and NDBI. The Landsat satellite images are freely available to download on the 

United States Geological Services (USGS) website (http://earthexplorer.usgs.gov/). These 

images were acquired during the dry season of the Colombo district. The following Table 1 

represents the details of Landsat images that were used in this study. 

Table 1. Information of Landsat images 

 Landsat 

Date Time Cloud Cover (%) Cloud Cover Land (%) 

   Version 

12/15/1988 04:24:16.1930250Z 8 8 L05 

2/7/1997 04:18:38.1820130Z 8 8 L05 

http://earthexplorer.usgs.gov/)
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1/2/2007 04:48:43.2450750Z 23 26 L05 

1/8/2015 04:53:58.6950720Z 3.21 3.34 L08 

1/13/2017 04:54:05.6817070Z 2.89 3.03 L08 

1/3/2019 04:53:47.7145259Z 16.9 17.63 L08 

 

Image Preprocessing 

The Landsat-5 TM and Landsat-8 OLI/TIRS projects satellite images were used to analyze 

the spatial changes of biophysical parameters. Firstly the images have to be corrected 

radiometrically and atmospherically to enhance their quality using the QGIS Desktop 3.16.0 

software. The Landsat- 8 OLI/TIRS thermal infrared band (band 10) has 100 m resolution 

and Landsat- 5 TM thermal-infrared band (band 6) has a resolution of 120 m. These thermal 

images were resampled using the nearest-neighbor algorithm with a pixel size of 30 m to 

match the optical bands. All of these preprocessing steps (Fig. 2) were done in WGS84/UTM 

44 N projection coordinate system. After prepressing, Fig. 3 shows the NDVI, NDBI, LST, 

UHI and UHS zones derivation steps of this paper. 
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Extraction of LU-LC distribution of NDVI and NDBI 

Calculating NDVI 

NDVI is a useful parameter to classify urban vegetation (Chen et al., 2006). The NDVI lies 

between -1 to +1. Positive NDVI values represent vegetation, and negative or more close to 

zero values represent water bodies (Avdan & Jovanovska, 2016; Zaitunah et al., 2018; 

Ranagalage et al., 2018). This index is formulated as below (Guha et al., 2020) 

Where 

                                                                                                          (𝑁𝐼𝑅 − 𝑅𝐸𝐷) 

                             𝑁𝐷𝑉𝐼  
                                                              (𝑁𝐼𝑅 + 𝑅𝐸𝐷)                                         (1) 

 

For Landsat 5 TM, NIR (Near-infrared) = band 4 and RED = band 3; for Landsat 8 OLI, 

NIR (Near-infrared) = band 5 and RED = band 4 

Calculating NDBI 

The NDBI lies between -1 to +1. In this range, values closer to 0 represent vegetation cover; 

negative values represent water bodies, and positive values for built-up areas ( Ranagalage et 

al., 2018; Zha et al., 2003) NDBI is used to identify urban and built-up areas (Chen et al., 

2006). 

Where 
 

                                                                                            (𝑀𝐼𝑅 − 𝑁𝐼𝑅) 

                                                    𝑁𝐷𝐵𝐼 = 

                                                      (𝑀𝐼𝑅 + 𝑁𝐼𝑅)                                       (2) 

 

For Landsat 5 TM, MIR (Mid-infrared) = band 5 and NIR (Near-infrared) = band 4; for 

Landsat 8 OLI, MIR (Mid- infrared) = band 6 and NIR (Near-infrared) = band 5 

LST from Landsat data 

This LST retrieving algorithm is based on converting thermal bands’ DNs into radiance 

values. And these radiances are used to evaluate the sensor brightness temperatures. 

Determining Top of Atmospheric Radiance (Lλ) 

The following two equations were used to convert the DN values of thermal bands to spectral 

radiance values of Landsat 5 and Landsat 8 images (Artis et al., 1982; U.S. Geological 

Survey, 2016). 

For Landsat 5 TM thermal band (band 6): 

 

𝐿λ = 0.0056322 ∗ 𝐷𝑁 + 0.1238                                                (3) 

For Landsat 8 OLI thermal band (band 10): 

 

𝐿λ = 0.0003342 ∗ 𝐷𝑁 + 0.1                                                  (4) 

Where 
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Lλ is the spectral radiance in Wm–2sr–1mm–1 

Calculating Top of Atmospheric Sensor Temperature (Tb) 

To retrieve the sensor brightness temperature in Celsius from spectral radiance values, the 

following equation was used (Avdan et al., 2016). 

 

 
Where 

Tb is the brightness temperature in Celsius(℃), Lλ is the spectral radiance in Wm–2sr–

1mm–1; K1 and K2 are calibration constants. For Landsat 5 TM K1 = 607.76 and K2 = 

1260.56; For Landsat 8 OLI K1 = 774.89 and K2 = 1321.08 

Determine Proportion of Vegetation (Fv) 

The NDVI thresholds methodology (Sobrino et al., 2004) was used to calculate the land 

surface emissivity (ε). The fractional vegetation(Fv) of each pixel was calculated by 

following expression. 

 
Where 

𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼max 

NDVI is the normalized difference vegetation index. The NDVImin and NDVImax are the 

minimum and maximum values of the NDVI, respectively. 

Evaluate Land Surface Emissivity (ε) 

dε is the effect of the geometrical distribution of the natural surfaces and internal reflections. 

For heterogeneous and undulating surfaces, the value of dε may be 2%. 

𝑑𝜀 = (1 − 𝜀s)(1 − 𝐹v)𝐹𝜀v                                                      (7) 

Where 

εv is vegetation emissivity, εs is soil emissivity, Fv is fractional vegetation and F is a 

shape factor whose mean is 

0.55 (Sobrino et al., 2004). 

 

𝜀 = 𝜀v𝐹v + 𝜀s(1 − 𝐹v) + 𝑑𝜀                                                      (8) 

Where 

𝛆 is emissivity. 

𝛆 gives (Sobrino et al., 2004) the following equation: 
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𝜀 = 0.004𝐹v + 0: 986                                                              (9) 

 

 

Calculating LST 

Hence, the 𝐋𝐒𝐓 was derived as follow (Guha, 2017; Guha et al., 2018; Ranagalage et al., 

2018) 

 

 

Where 

λ is the effective wavelength (λ = 11.5 μm for Landsat TM Band 6, λ = 10.8 μm for Landsat 

TIRS Band 10), σ is Boltzmann constant (1.38 × 10–23 JK–1), h is Plank’s constant 

(6.626 × 10–34 Js), c is the velocity of light in a vacuum(2.998 × 10–8 ms–1) and ε is 

emissivity. 

 

Mapping Urban Heat Island and Non- Urban Heat Island Zones 

The following two expressions were used to map the Urban Heat Island areas and Non- 

Urban Heat Island areas for different years (Guha, 2017; Guha et al., 2018). 

For UHI Zones 

 

LST > µ + 0.5 ∗ δ (11) 

 

And for Non-UHI Zones 

 

0 < LST ≤ µ + 0.5 ∗ δ (12) 

 

Where 

μ is the mean LST and δ is the standard deviation of LST. 

Delineating the Urban Hot Spots 

The following expression was used to find the UHS from LST maps in the Colombo district 

over different years (Guha, 2017; Guha et al., 2018). These UHS are extremely hot and 

generate inside the UHI zones. It is not recommended for human settlements in these hot 

pocket areas. 

LST > µ + 2 ∗ δ (13) 

Statistical Analysis 

Finally to observe the LST variations with respect to the other biophysical parameters, 

linear regression models were adopted. These statistical analysis were done using the 

RStudio an open source software. 
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RESULTS AND DISCUSSION 

Spatial changes of LST, NDVI, and NDBI over time 

Dynamicity of LST 

Table 2. Land Surface Temperature summary in Celsius. 

 LST(℃)  

Year 
Min Max Mean Sd Threshold 

Temperature 

Threshold 

Temperature 

     for UHI for UHS 

1988 15.642 28.768 22.291 1.176 22.879 24.643 

1997 21.503 34.860 26.914 1.137 27.483 29.188 

2007 10.926 34.063 26.926 2.142 27.997 31.210 

2015 23.148 34.675 26.464 1.391 27.160 29.246 

2017 22.500 33.821 27.005 1.585 27.798 30.175 

2019 23.377 35.801 27.343 1.641 28.164 30.625 

As per Table 2, LST varied from 15.642℃ - 28.768℃ in 1988, 21.503℃ - 34.860℃ in 

1997, 10.926℃ - 34.063℃ in 2007, 23.148℃ - 34.675℃ in 2015, 22.500℃ - 33.821℃ in 

2017 and 23.377℃ - 35.801℃ in 2019. The mean of LST changed by 22.66% from 1988 

to 2019. In 2007, it had an LST anomaly with a 2.142 standard deviation due to its highest 

cloud cover (Table 1). Furthermore, it shows the enhancing tend of the standard deviation of 

LST from 1997 to 2019 except 2007. 

The derived LST images are shown in Fig. 4. Since we used the same color ramp, 99.93% of 

the area was less than 27℃ (<27℃) in 1988. Combining its’ both lower mean of LST 

(Table 1) and the higher presentage of lower LST area, 1988 was the coolest year. In 

1997, and 2007, high LST lands were mostly noticeable adjacent to the Colombo harbour 

area (Fig. 4). This fact has been previously notified in several studies (Manawadu et al., 

2008; Ranagalage et al., 2017, 2018). However, these lands had rapidly expanded towards the 

northern, southern, and eastern parts of the district by 2015. After 2007, the “Seethagama” 

which is located at the north-eastern boundary of the Colombo has been generating a high 

LST area following the spatial dynamicity of the urban construction area. 

 

Dynamicity of NDVI and NDBI 

Table 3 shows a descriptive summary of NDVI values of the Colombo district. The NDVIs 

ranged from -0.372 to 0.780 in 1988, -0.415 to 0.810 in 1997, -0.228 to 0.767 in 2007, -

0.388 to 0.832 in 2015, -0.245 to 0.804 in 2017 

and -0.443 to 0.832 in 2019. The mean of NDVI positively increased from 0.516 to 0.561. As 

Fig. 5, greenery areas with high NDVIs represent more vegetated and cultivated lands. The 

gross deforestation of Colombo district in 1992-1996 was 118 ℎ𝑎 𝑦𝑟–1 and also rice paddy 

extent of both irrigated and rainfed lands were 24 ℎ𝑎 𝑦𝑟–1 and –2 ℎ𝑎 𝑦𝑟–1 during this period 

respectively (Mattsson et al., 2012). The deforestation and cultivation of Colombo haven’t 

been well-documented yet. However, Fig. 5 shows an improvement of vegetation cover in 

the eastern part of Colombo from 1988 - to 2019. Hence, it implies that rate changes of 

cultivation can mitigate some amount of deforestation impaction. 
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Figure 4. The spatial patterns of LST a) 1988, b) 1997, c) 2007, d) 2015, e) 2017 and f) 2019. 

  

The NDBI maximum values were continually increasing from 1988 to 2019 (Table 3). 

Generally, built-up areas increased between 1988 and 2019; and this fact is noticeable in Fig. 

6 In 1988, the highest NDBI values were distributed along with the western coastal belt and 

adjacent to the western part of the area. But this distribution was getting expanded to the 

north, east, and south along with transporting system and constructed areas. In 2015, 

2017, and 2019 images, the highest NDBI values were located adjacent to the newly added 

part of the district. The port city project was initiated during the 2014 – 2015 period after 

many political and public acceptance (De Silva et al., 2015; Dias et al., 2016) and this 

explains the highest NDBI values abounded in the port city area. 
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Table 3. NDVI and NDBI of 1988,1997,2015,2017 and 2019. 

 
 NDVI     NDBI  

Year  

Min 

 

Max 

 

Mean 

 

Sd 

 

Min 

 

Max 

  

Mean 

 

Sd 

1988 -0.372 0.780 0.516 0.153 -0.630 0.383  -0.262 0.107 

1997 -0.415 0.810 0.494 0.150 -0.740 0.378  -0.222 0.127 

2007 -0.228 0.767 0.481 0.144 -0.641 0.325  -0.211 0.118 

2015 -0.388 0.832 0.588 0.166 -0.629 0.364  -0.156 0.136 

2017 -0.245 0.804 0.528 0.160 -0.578 0.359  -0.162 0.133 

2019 -0.443 0.832 0.561 0.178 -0.622 0.404  -0.181 0.142 

  

Figure 5. NDVI of a) 1988, b) 1997, c) 2007, d) 2015, e) 2017 and f) 2019. 
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Figure 6. NDBI of a) 1988, b) 1997, c) 2007, d) 2015, e) 2017 and f) 2019. 
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LST has a negative relationship with vegetation cover and it has an inverse relationship with 

built-up areas and bare lands. For each year, p-values are less than 0.005 (Fig. 7 & Fig. 8) 

while NDVI and NDBI have statistically significant relationships between LSTs. In 1988, the 

correlation between NDVI and LST was low due to its’ less urbanization. Generally, NDBI 

vs. LST is a much stronger relationship than NDVI vs. LST. It concludes the predictive 

modelling or explanatory modelling power of NDBI affects on the much stronger way on 

LST than NDVI. The increasing trend of 𝑅2 (Table 4) in both NDVI and NDBI interpret 

that spatial change of LST were getting stronger in 1988,1997,2007,2015,2017 and 2019 as 

the Colombo become more urbanized. 

Table 4. Correlation coefficients and R squares of NDVI and NDBI with respect to 

LST. 
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Table 5. Temporal distribution of LST in UHI Zones. 

 

 
The UHI intensity is interpreted as the mean temperatures difference between UHI and Non-

UHI areas. The temporal distribution of derived LSTs for UHI and Non-UHI zones are 

shown in Table 5. UHI intensities fluctuate with increasing order. The UHI intensities were 

2.021℃, 1.989℃, 3.059℃, 2.579℃, 2.383℃ and 2.969℃ in 1988, 1997, 2007, 2015, 2017 

and 2019 respectively. The standard deviation of UHI areas explain the clear picture of the 

UHI intensity of Colombo, i.e. 0.785 in 1988, 0.887 in 1997, 0.928 in 2007, 0.803 in 2015, 

0.936 in 2017 and 0.797 in 2019. It implies that UHI intensity was consistent throughout the 

UHI for various Landsat projects. The expansion of UHI zones area was 71.55% from 1988 

to 2019 and is evidence of a rapid increase of SUHI phenomena in the study area. And these 

UHI zones expanded from the western coastal belt to the eastern along with the center part of 

the district is observed from Fig. 9. 

 
Figure 9. Spatial and Temporal changes of UHI and Non-UHI zones of a) 1988, b) 1997, c) 

2007, d) 2015, e) 2017, f) 2019. 
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Table 6. Temporal Distribution of LST in UHS Zones 

 

The main goal of this study is to identify the UHS pattern based on Landsat data. These hot 

pockets are developed inside the UHI zones and they aren’t recommended for human 

settlements. In 1988 and 1997, urban hot spots were founded to be declining along with the 

western coastal belt. However, after 2015, they were more concentrated and adjacent to the 

port city area (Fig. 10). These UHS were observed by threshold temperature (Table 6). 

Additionally, other new hot spots have been generating since 2017 around “Seethagama” and 

also this zone is recognized as ongoing construction projects area. As in earlier studies, areas 

close to bare land, parking areas and construction fields have a higher possibility of 

generating UHS and this fact is supported by our final findings. Low vegetation and water 

bodies’ distribution are a recognizable common matter in these zones. Fig. 11 shows the 

gradual increase of the threshold temperature in both UHI and UHS zones during the past 3 

decades. Thus, we can expect much more heat pockets in near future adjacent to highly 

industrial sites in the Colombo district. 
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CONCLUSIONS 

In this study, multiple Landsat images for 1988, 1997, 2007, 2015, 2017, and 2019 were used 

to study the dynamicity of the urban heat island scenario of the Colombo district in Sri 

Lanka. The result revealed that earlier, these UHI zones were located in the western coastal 

belt; however, they were expanded to the eastern along with the center part of the district 

during the past 3 decades. Furthermore, the expansion of UHI zones area was 71.55% from 

1988 to 2019 and is an evidence of a rapid increase of SUHI phenomena in the study area. 

For the main objective of this study, even though hot spots had declined along with the 

western coastal belt in prior years, in 2019, these spots were found to be more concentrated 

and adjacent to the port city area. In addition, there are new hot spots that have been 

generating since 2017 around “Seethagama”, which is a construction project area. A gradual 

increase of threshold temperature in both UHI and UHS zones during the past 3 decades 

explains that it can be predicted much more heat pockets in near future adjacent to highly 

industrial sites in the Colombo district. 

Hence, these observations could be helpful to aid in mitigating these micro-climatic 

effects in the Colombo district. There is an urgent need for urban designers and 

policymakers to pay attention to this situation. According to previous research, it is highly 

recommended that urban greening strategies are adopted to control the generation of UHI 

and UHS zones. 

In the future, more work can be done to elaborate the findings of this paper. Other method or 

remotely sensed satellite images can be used to validate current findings. Additional 

biophysical parameters can also be added to increase the quality of results. Application of 

advanced statistical methods to estimate correlations between parameters used can also be 

done. Finally, a model can be built to predict future scenarios and outcomes of LST 

variations changes over time. 

 

Figure 11. Line graph of Threshold LST variation for UHI 
and UHS Zones. 
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